Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

$\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding in trans-bis(acetonitrile- N)tetraaquacobalt(II) dibromide

Craig V. Depree, ${ }^{\text {a }}$ Eric W. Ainscough, ${ }^{\text {a }}$ Andrew M. Brodie, ${ }^{\text {a* }}$ Graeme J. Gainsford ${ }^{\text {b }}$ and Cornelis Lensink ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry-Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, and ${ }^{\mathbf{b}}$ Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
Correspondence e-mail: a.brodie@massey.ac.nz

Received 28 April 1999
Accepted 22 September 1999
In the title complex, $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Br}_{2}$, the $\mathrm{Co}^{\text {II }}$ atom lies on an inversion centre and is octahedrally coordinated by two trans acetonitrile molecules and four water molecules. Hydrogen bonding between the water molecules and lattice bromide ions yields a three-dimensional structure.

Comment

Despite there being numerous acetonitrile- and aqua-metal complexes reported in the literature, trans-bis(acetonitrileN)tetraaquacobalt(II) dibromide, (I), is the first reported structure of a metal complex where the ligands are exclusively

(I)
coordinated water and acetonitrile molecules. The cobalt(II) atom lies on a centre of symmetry and is coordinated to two trans acetonitrile molecules and to four water molecules (Fig. 1). The metal coordination is close to octahedral (Table 1), with the maximum deviation $(X-\mathrm{Co}-Y)$ from 90° being 3.7 (2) ${ }^{\circ}$. The mean $\mathrm{Co}-\mathrm{O}$ length, $2.063 \AA$, is consistent with reported $\mathrm{Co}-\mathrm{OH}_{2}$ distances of tetraaqua complexes (2.0602.124 A) (Abrahams et al., 1996; de Meester \& Skapski, 1973; Salas et al., 1992). Variations in the two $\mathrm{Co}-\mathrm{O}$ bond lengths [0.15 (7) \AA], although here barely significant, have been observed previously in tetraaquacobalt(II) complexes; for example, trans-tetraaquabis(adenine)cobalt(II) has $\mathrm{Co}-\mathrm{O}$

Figure 1
ORTEP-3 (Farrugia, 1997) diagram of $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ with displacement ellipsoids drawn at the 50% probability level and H atoms of arbitrary size. Unlabelled atoms are related to labelled atoms by the inversion centre at Co1.
bond lengths of 2.073 (4) and 2.114 (5) \AA, which the authors attributed to different constraints imposed by hydrogenbonding linkages (de Meester \& Skapski, 1973).

All the coordinated water H atoms form hydrogen bonds to adjacent bromide ions, creating a three-dimensional network (Fig. 2 and Table 2). Each bromide ion forms four hydrogen bonds in a distorted tetrahedral arrangement to different $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ cations with $\mathrm{H} \cdots \mathrm{Br}$ distances consistent with the reported distances of 2.30-2.68 \AA (Mikenda, 1986; Tegenfeldt et al., 1979; Sieron \& BukowskaStrzyzewska, 1997). Three of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ angles are close to the most probable angle of 160° for a two-centre hydrogen bond (Jeffrey et al., 1985) while the fourth makes a smaller angle at the H atom, $135(10)^{\circ}$, but with the $\mathrm{Br} \cdots \mathrm{O}$ contact the smallest at 3.283 (6) \AA. The $\mathrm{Br} \cdots \mathrm{O}$ distances range from 3.283 (6) to 3.315 (6) Å compared with previously observed values between 3.195 (6) and 3.421 (3) A (Kepert et al., 1996; Sieron \& Bukowska-Strzyzewska, 1997; Cunningham et al., 1991).

Figure 2
The three-dimensional network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ bonds in the structure of $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Br}_{2}$ viewed down the a axis, with the b axis to the right. Some link atoms have been omitted for clarity.

As expected, the acetonitrile molecule is linear [$\mathrm{N} 1-\mathrm{C} 1-$ $\left.\mathrm{C} 2=179.0(6)^{\circ}\right]$, but with bent coordination to the cobalt(II) $\left[\mathrm{Co}-\mathrm{N} 1-\mathrm{C} 1=165.0(4)^{\circ}\right]$. Such coordination has been observed in polymeric $\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left[164.4^{\circ}\right.$; Begley et al., 1985]. Metal-acetonitrile bent coordination is indeed quite common with angles from 145.2 to 176.9°, and an average of 167°, having been reported (Agterberg et al., 1998; Begley et al., 1985; Chisholm et al., 1996; Holligan et al., 1992; Libby et al., 1993). This average is somewhat lowered by the two extremely low values for nickel(II) (Holligan et al., 1992) (145.2 ${ }^{\circ}$) and manganese(III) (Libby et al., 1993) (149.1 ${ }^{\circ}$) complexes, which have been attributed to hydrogen bonding and steric effects, respectively.

Experimental

Crystals of $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Br}_{2}$ were obtained after unintentional co-extraction of excess CoBr_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from the reaction of excess CoBr_{2} with hexakis(2-pyridyloxy)cyclotriphosphazene (prior to extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$ solvent was evaporated from the reaction mixture).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Br}_{2}$
$M_{r}=372.92$
Monoclinic, $P 2_{1} / c$
$a=6.843$ (4) \AA
$b=12.553$ (7) \AA
$c=8.076(5) \AA$
$\beta=111.370(8)^{\circ}$
$V=646.0(6) \AA^{3}$

Data collection

CCD area-detector diffractometer φ and ω scans
Absorption correction: multi-scan
[SAINT (Siemens, 1994) and
SADABS (Sheldrick, 1996)]
$T_{\text {min }}=0.151, T_{\text {max }}=0.301$
4724 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.917 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=7.502 \mathrm{~mm}^{-1} \\
& T=158(2) \mathrm{K} \\
& \text { Block, pale brown } \\
& 0.44 \times 0.22 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.038$
$w R\left(F^{2}\right)=0.087$
$S=0.904$
1313 reflections
78 parameters

1313 independent reflections
925 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-8 \rightarrow 7$
$k=-6 \rightarrow 15$
$l=-9 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0515 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=1.050 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.523 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 2$	$2.056(5)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.125(6)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.071(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.454(7)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.112(4)$		
			$89.13(19)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	$90.3(2)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$164.9(4)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$86.34(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$	$179.2(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$90.87(19)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	

[^0]Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{Br} 1$	$0.98(7)$	$2.38(6)$	$3.315(6)$	$161(5)$
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.64(7)$	$2.65(7)$	$3.295(6)$	$175(7)$
$\mathrm{O}^{\mathrm{ii}}-\mathrm{H} 21 \cdots \mathrm{Br}^{\mathrm{ii}}$	$0.88(7)$	$2.42(7)$	$3.289(5)$	$169(7)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 22 \cdots \mathrm{Br} 1^{\mathrm{iii}}$	$0.76(10)$	$2.70(11)$	$3.283(6)$	$135(10)$

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (iii) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$.
The H atoms bound to O 1 and O 2 were located from a difference Fourier synthesis and refined unrestrained; methyl-H atoms are in calculated positions. The residual electron-density maximum is 0.97 Å from Br1.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: WINGX (Farrugia, 1998), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1257). Services for accessing these data are described at the back of the journal.

References

Abrahams, B. F., Egan, S. J., Hoskins, B. F. \& Robson, R. (1996). Acta Cryst. C52, 2427-2429.
Agterberg, F. P. W., Provo Kluit, H. A. J., Driessen, W. L., Reedijk, J., Oevering, H., Buijs, W., Veldman, N., Lakin, M. T. \& Spek, A. L. (1998). Inorg. Chim. Acta, 267, 183-192.
Begley, M. J., Dove, M. F. A., Hibbert, R. C., Logan, N., Nunn, M. \& Sowerby, D. B. (1985). J. Chem. Soc. Dalton Trans. pp. 2433-2436.

Chisholm, M. H., Christou, G., Folting, K., Huffman, J. C., James, C. A., Samuels, J. A., Wesemann, J. L. \& Woodruff, W. H. (1996). Inorg. Chem. 35, 3643-3658.
Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P. \& Sheerin, D. (1991). J. Chem. Soc. Chem. Commun. p. 432.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
Holligan, B. M., Jeffery, J. C. \& Ward, M. D. (1992). J. Chem. Soc. Dalton Trans. pp. 3337-3344.
Jeffrey, G. A., Maluszynska, H. \& Mitra, A. (1985). Int. J. Biol. Macromol. 7, 336-348.
Kepert, D. L., Waters, A. F. \& White, A. H. (1996). Aust. J. Chem. 49, 117-135.
Libby, E., Folting, K., Huffman, C. J., Huffman, J. C. \& Christou, G. (1993). Inorg. Chem. 32, 2549-2556.
Meester, P. de \& Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 15961601.

Mikenda, W. (1986). J. Mol. Struct. 147, 1-15.
Salas, J. M., Enrique, C. \& Romero, M. A. (1992). Polyhedron, 11, 2903-2912.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT. Version 4.021. Data Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sieron, L. \& Bukowska-Strzyzewska, M. (1997). Acta Cryst. C53, 296-298.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tegenfeldt, J., Tellgren, R., Pedersen, B. \& Olovsson, I. (1979). Acta Cryst. B35, 1679-1682.

[^0]: Symmetry code: (i) $1-x,-y,-z$.

